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Abstract

This paper presents an improved stopped simplex algorithm that aims to

further decrease the stopped number of the variables. First of all, two

special cuts are generated by introducing a linear transformation to cut

the intersection of the objective function hyperplane and the feasible

region of the linear programming relaxation problem. So, the cuts lead to

the more narrow intervals of the variables on the objective function

hyperplane. Secondly, the stopped simplex algorithm with the cuts is

carried out to do a search on the objective function hyperplane. Finally, a

test on some classical numerical examples is made. It shows that the

algorithm presented here is more efficient and potential, compared with

Thompson's algorithm.

1. Introduction

The classical cutting plane method and the branch-and-bound
principle are the most popular algorithms for integer linear programs
(ILP in short). They always solve a series of linear programming
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subproblems generated by cuts or branches. For this reason, various
researchers expended a considerable amount of effort in trying to
improve the efficiency of cutting and branching. The most important
surveys of Gomory's cut and branch-and-bound have been published by
Balas et al. [2] and Achterberg et al. [1]. In addition, some cutting plane
techniques other than Gomory’s have achieved success by focusing on the
generation of deep cutting planes (see for instance Boyd [3], Eckstein and
Nediak [5] and Letchford [9]).

Observe that if the solution to ILP is close to an optimal solution to
the associated linear programming relaxation problem, denoted by RILP,
it will be a good idea letting the objective function varied parametrically
and searching for the solution to ILP on the objective function hyperplane
shifts. Based on this idea, various search algorithms have been presented
(see for instance Thompson [10], Joseph et al.  [7, 8], and Gao [6]). Of
these, Thompson’s stopped simplex method [10] deserves further
attention due to its excellent computational characteristics. According to
Thompson’s statement, the stopped simplex method solves a great many
of stopped linear programming problems to arrive at an answer with
little computation, and has a moderate memory requirement that varies
linearly with the size of the problem. Obviously, the computational
efficiency of the stopped simplex method is primarily determined by the
number of the stopped linear programming problems solved, that is, the
stopped number used on the variables. Taking notice of that, in this
paper we present an improvement of the stopped simplex algorithm by
Thompson that aims to further decrease the stopped number of the
variables. For this reason, two special cuts are generated by introducing
a linear transformation to cut the intersection of the objective function
hyperplane and the feasible region of the linear programming relaxation
problem. So, the cuts lead to the more narrow intervals of the variables
on the objective function hyperplane. Subsequently, the stopped simplex
algorithm with the cuts is carried out to do a search on the objective
function hyperplane. Finally, a test on some classical numerical examples
is made. It shows that the algorithm presented here is more efficient and
potential, compared with Thompson’s algorithm.

The paper is organized as follows. In Section 2, the basic theory on
searching for the solution on the objective function hyperplane is
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established. Section 3 presents an improved stopped simplex algorithm to
do a search on the objective function hyperplane, and Section 4 describes
the algorithm steps in detail. In Section 5, one numerical example is first
given to illustrate the use of the algorithm and then the further
computational study on some classical examples is made. Finally in
Section 6 we make a brief conclusion about the algorithm.

2. Preliminaries

Consider a pure integer linear programming problem of the form

( )ILP xcTmax

s. t.    bAx ≤

,0≥x  and integral,

where ( ) ,nm
ij ZaA ×∈=  and ., nm ZcZb ∈∈

Suppose that by applying the simplex method (see for instance

Dantzig [4]), we obtain an optimal basic solution to RILP,  ,∗=∗ bxB

0=∗Nx  with the optimum value ,∗f  where ∗Bx  and ∗Nx  are the

optimal basic and non-basic variables, respectively. Let ∗Nc  denote the

reduced costs corresponding to the non-basic variables. Then the
objective function and the constraints can be expressed as

,∗∗−= ∗
N

T
N

xcff (2.1)

,
1

∗∗
∗−∗∗ −= NB xNBbx (2.2)

,0,0 ≥≥ ∗∗ NB xx (2.3)

where ∗B  and ∗N  are the optimal basic and non-basic matrices,

respectively. For convenience, assume .0>∗Nc

If the optimal basic solution to RILP is integral, it is also an optimal
one to ILP. Otherwise, the optimum value for ILP is certainly smaller
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than .∗f  In this case, let the objective function f as a parameter varied

down beginning with .∗f  The associated objective function hyperplane

shift is represented by .fS  Obviously if any, a feasible solution to ILP

constantly lies on the objective function hyperplane with an integral
objective value. As soon as a feasible solution to ILP emerges on an

objective function hyperplane shift ,fS  the algorithm can be terminated

according to the following optimality rule.

Theorem 2.1. If there is a feasible solution xx =  to ILP on an

objective function hyperplane shift fS  with ff =  and no feasible

solution to ILP yields for any integral value of f with ,ff >  then xx =  is

optimal for ILP with the objective value .f

In the next section we will use the stopped simplex algorithm to

perform a search on the objective function hyperplane .fS

3. The Stopped Simplex Algorithm with Special Cuts

According to Thompson’s stopped simplex method [10], once a
variable is assigned an integral value in a stopped search course, we call

it “stopped” and otherwise, "unstopped” or “free”. In what follows, S is

used to represent the subscript set of the stopped variables and T, the

subscript set of the unstopped ones. When a stopped course is changed,
the value of the last stopped variable is increased by one and other
stopped variables keep unchanged.

Observe that it is significant for improving the efficiency of the
stopped simplex algorithm how to make them more narrow the intervals
of the variables on the objective function hyperplane. For this reason, we
introduce a linear transformation of the non-basic variables into a new
variable by (2.1) as follows.

jN

n

j
jxdy ∗∑

=

=
1

(3.1)
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with 















=

∗

∗

L
N

jN
j

c

c
d  for ,...,,2,1 nj =  and { },min

1 jNnj
L
N

cc ∗∗ ≤≤
=  where [ ]•

stands for the greatest integer number smaller than or equal to •.
Obviously, all ( )njdj ...,,1=  are integer numbers greater than or equal

to one. Therefore, the value of the variable y associated with a feasible

solution to ILP is a nonnegative integer number. Furthermore, we have

the following useful conclusion for the interval of the variable y.

Theorem 3.1. Let 
j

jN
j d

c ∗
=α  for nj ...,,2,1=  and { },max

1 jnj
U α=α

≤≤

{ }.min
1 jnj

L α=α
≤≤

 Then for a fixed integral value of f, the variable y by (3.1)

with a feasible solution has an interval

.LU
ffyff

α

−≤≤
α

− ∗∗
(3.2)

Proof. Observe that (2.1) holds for a fixed integral value of f and a

feasible solution on the objective function hyperplane ,fS  that is,

( ) .
1

ffxd jNj

n

j
j −=α ∗

=
∗∑

Due to { } { },min,max
11 jnj

L
jnj

U α=αα=α
≤≤≤≤

 and 0≥∗ jNjxd  for all ,1=j

,...,,2 n  we have

( )∑ ∑ ∑
= = =

∗∗∗ α≤α≤α
n

j

n

j

n

j
jNj

U
jNjjjNj

L xdxdxd
1 1 1

or

.yffy UL α≤−≤α ∗

The expressions above are equivalent to the inequalities (3.2). This
completes the proof of the theorem.
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Actually, the left and right inequalities of (3.2) are two special cuts

with f as a parameter, which can be used to cut the intersection of the

objective function hyperplane and the feasible region of RILP. Therefore,
the cuts generated by the linear transformation (3.1) make them more
narrow the intervals of the variables on the objective function
hyperplane.

Now for a fixed integral value of f with ,∗< ff  let ILy  be the

smallest integer number greater than or equal to ,U
ff

α

−∗
 and ,IUy  the

greatest integer number smaller than or equal to .L
ff

α

−∗
 According to

the above theorem, ILy  and IUy  are integral lower and upper bounds of

the variable y with a feasible solution, respectively. If ,IUIL yy >  then

no feasible solution exists on the associated objective function hyperplane

in terms of the number theoretic properties. Otherwise, the stopped

simplex algorithm is performed to do a search on the objective function

hyperplane fS  below.

First, if jNx ∗  for any { }nj ...,,1∈  is a slack variable of (ILP), it will

be expressed as the linear function of the decision variables by the

associated constraint of (ILP) and then substituted into (3.1). So, (3.2) is

equivalently transformed into the equality constraint on the decision

variables, represented by

.
1
∑
=

′≤′≤′
n

j

IU
jj

IL yxdy

Next, we carry out the stops on the decision variables jx  in the sequence

of ....,,1 nj =  Suppose that the variables ( )1...,, 11 ≥− ixx i  are stopped

in a stopped course, where 1=i  means that no variable is stopped.

Taking the minimum value of ix  as the objective function, we construct

the i-th stopped linear programming problem, labeled by (SLP-i), below.
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min        ix

s.t.         bAx ≤

fxcT =

∑
=

′≤′≤′
n

j

IU
jj

IL yxdy
1

11 ...,, −ixx     stopped

....,,,0 nikxk =≥

The stopped problem above can be solved by the dual simplex algorithm.

Obviously if any, the optimum value of (SLP-i) is a lower bound of .ix  Let

IL
ix  be the smallest integral number greater than or equal to the lower

bound of .ix  Then IL
ix  is an integral lower bound of .ix  In the forward

search, stop the i-th variable ix  at .IL
ix  If (SLP-i) has no feasible

solution, the forward stopped search will produce no feasible solution to
ILP by the following theorem, in which a backtracking is performed to

make 1−ix  become free.

Theorem 3.2. Suppose that for a given integral value of f, the
variables

( ) ( )2...,, 21 ≥∗ − ixx i

are assigned fixed integral values, and correspondingly, ( )( )1 - −iSLP  has

a feasible solution with the objective value .0
1−ix  If there is no optimal

solution to the problem (SLP-i) with the stopped variables ( )∗  and

,1
11 −− = ii xx  where 1

1−ix  is an integer number greater than ,0
1−ix  then the

stopped variables ( )∗  and 1−ix  with 1
11 −− > ii xx  produce no feasible

solution to ILP.

Similar to the proof of Theorem 4 by Thompson [10], the proof is
easily completed. Concretely, our stopped simplex search procedure on

the objective function hyperplane fS  is devised as follows.
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At the outset, set { },...,,1, nTS =φ=  and then compute the lower

bound ILy  and upper bound IUy  of the variable y by the linear

transformation (3.1). If ,IUIL yy >  set 1−f  to f and go back to the

outset. Otherwise, find the lower bound ILx1  of the variable 1x  by solving

the stopped problem (SLP-1). If (SLP-1) has no feasible solution, set 1−f
to f and go back to the outset. If (SLP-1) has an optimal solution, stop the

variable 1x  at its lower bound .1
ILx  Suppose that this forward search

course goes on until the ( )1−i -th variable, ( ),21 ≥− ixi  is stopped. By

now { } { }....,,,1...,,1 niTiS =−=  Find IL
ix  by solving the i-th stopped

problem (SLP-i). If (SLP-i) has no feasible solution, a backtracking will be

started by setting { }1\ −= iSS  and { }.1−= iTT ∪  If (SLP-i) has an

optimum value, the next variable ix  is stopped at its lower bound .IL
ix

Continue in this way. When a backtracking arrives at the first stopped

variable 1x  whose value is either beyond its upper bound or makes (SLP-

2) not feasible, set 1−f  to f and go back to the outset. When the last

variable nx  is stopped at its lower bound, the stopped simplex search

procedure ends with a feasible solution on the objective function

hyperplane .fS

4. The Algorithm Steps

According to the algorithm theory above-mentioned, we can describe
the computational steps of the stopped simplex algorithm in detail as
follows.

Step 1. Solve RILP to get the optimal solution 0, == ∗∗
∗

NB xbx

with the optimum value ,∗f  and go to next step.

Step 2. If ∗=∗ bxB  is integral, the algorithm is terminated.

Otherwise, introduce the linear transformation (3.1), and compute the

lower and upper bounds, ILy  and ,IUy  of the variable y by (3.2) and then

go to next step.
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Step 3. Let IUf  be the greatest integer number smaller than ∗f  and

M, a given adequate small integer number with ,IUfM <  set IUff =

and go to next step.

Step 4. Check if .Mf <  If it is so, the algorithm terminates with no

feasible solution. Otherwise, go to next step.

Step 5. Set ( ) { },...,,1,,0...,,0,0 nTSRsi n =φ=∈==  and then

go to next step.

Step 6. If IUIL yy >  holds, set 1−f  to f and go back to Step 4.

Otherwise, go to next step.

Step 7. If ,ni =  the algorithm terminates with the output of an

optimal solution. Otherwise, go to next step.

Step 8. Find the lower bound IL
ix 1+  of 1+ix  by solving the stopped

problem ( )( ).1-SLP +i  If ( )( )1-SLP +i  has an optimum value, go to next

step. Otherwise, that is, if ( )( )1-SLP +i  has no feasible solution, let

{ } { } ,1,,\ −=∪== iiiTTiSS  and go to Step 10.

Step 9. Set 1+i  to i, and stop the variable ix  at its lower bound

,IL
ix  and let { } { },\, iTTiSS == ∪  and go back to Step 7.

Step 10. See if .φ=S  If it is so, set 1−f  to f and go back to Step 4.

Otherwise, set ,1+= ii xx  and go back to Step 8.

By carrying out the algorithm steps above, we obtain either an

optimal solution or the fact that there is no feasible solution to ILP.

5. A Numerical Example and Further Computational Study

First of all, we illustrate the use of our algorithm in detail with the
following example.

Example 1.  The problem considered is:
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(ILP)     max      3x−

                                           s.t.         89785 321 ≤+−− xxx

1156 321 −≤−− xxx

29253 321 −≤−+− xxx

,0,, 321 ≥xxx  and integral.

Introducing the slack variables ( )6,5,40 =≥ jx j  and then solving

the corresponding linear programming relaxation problem by the dual
simplex method, we obtain

6541 478.0211.0167.0344.1 xxxx +++=

6542 411.0344.0167.0878.0 xxxx +++=

.811.0544.0167.0678.14 6543 xxxx +++=

Obviously, the optimal solution to RILP, === 321 ,878.0,344.1 xxx

,678.14  is non-integral. Therefore, we perform the stopped simplex

search on the objective function hyperplane fS  below.

Due to ,4
167.0
811.0,3

167.0
544.0,1 321 =



==



== ddd  we introduce a

linear transformation

321654 436043 xxxxxxy ++−−=++=

and rewrite the objective function as

( ) ( )6543 4203.03181.0167.0678.14 xxxx ++=−

and therefore obtain two special cutting inequalities

.
167.0

678.14
203.0

678.14 33 −
≤≤

− xyx
(5.1)

Subsequently, taking ,153 =x  we have 928.1586.1 ≤≤ y  by (5.1). Thus,

there is no feasible solution on the associated objective hyperplane with

.15−=f
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Again setting 1613 =+x  to ,3x  we have .7== IUIL yy  In this

case, the two cutting inequalities are 674367 321 ≤++−≤ xxx  (see

Fig. 1). Solving the stopped problem (SLP-1), we obtain the optimum

value 9565.11 =∗x  of ,1x  and thus .21 =ILx  Letting 21 =x  and then

solving (SLP-2), we have .6633.12 =∗x  Stopping 22 =x  leads to no

feasible solution, and next, a backtrack to 31 =x  leads to no feasible

solution. Therefore it is concluded that no feasible solution to ILP exists

on the associated objective function hyperplane.

Figure 1.   Two special cuts on the objective function hyperplane

.163 =x

Similarly, the algorithm also finds no feasible solution on the

objective function hyperplane with 173 =x  after solving 3 stopped

problems and carrying out 3 stops.

Finally, when 3x  is increased by 1 up to 18, it produces 6327.21 =∗x

solving (SLP-1). Therefore, by stopping 31 =x  and solving (SLP-2), we

obtain a solution to the problem below.

.18,3,3 321 === xxx
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This is a demonstrating example of Section 6 due to Thompson [10].

Our algorithm only makes 8 stops to obtain the answer to the problem.

However, the problem was solved after making 12 stops by Thompson’s

method.

Our stopped simplex algorithm was programmed by MATLAB V6.5

and conducted on a HΛSEE S262C to solve the classical examples given
by Thompson [10] in Section 7. A comparison between our improved
stopped simplex algorithm and the stopped simplex algorithm by
Thompson is performed. The results on the number of the stopped
problems solved (labeled by problems), the number of the stops needed
(labeled by stops), and the number of the pivots needed (labeled by
pivots) are shown in Table 1.

Table 1. A comparison between our algorithm and Thompson’s algorithm

Example Our algorithm Thompson’s algorithm

No. problems  stops  pivots problems  stops  pivots

1 2 2 5 17 18 ∗

2 3 3 7 17> 18> ∗

3 63 37 298 173 ∗ 194

4 31 30 179 ∗ ∗ ∗

5 125 26 424 255 ∗ 102

6 455 227 1138 260 ∗ 105

7 434 210 1384 255 ∗ 103

8 8 8 43 13 ∗ 84

9 239 232 2222 2038 ∗ 10875

Note. ∗ indicates that the number for the problem was not reported in

the literature.

It is seen from Table 1 that our algorithm greatly improves

Thompson’s stopped simplex algorithm except Examples 5, 6 and 7.
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However, the problem like Examples 5, 6 and 7 has a long narrow

feasible region in geometry. In this case, the cuts generated in our

algorithm always do not cut through the intersection of the objective

function hyperplane and the feasible region of RILP, and therefore are

meaningless for our algorithm. It should be pointed out here that most of

applications are not the case.

Limited to the low performance of the computer, we do not make a

numerical test on large-scaled problems, such as ones from MIPLIB,

ORlibrary. This work, together with analysis of the algorithm's

complexity, will be done later.

6. Concluding Remarks

An important feature in the algorithm is that the two special cuts are

generated by introducing a linear transformation. The cuts make them

more narrow the intervals of the variables on the objective function

hyperplane, and therefore greatly improve the stopped simplex algorithm

by Thompson [10]. It was proved by the numerical test in Section 5. Since

the stopped simplex algorithm has the high performance with little

computation and moderate memory requirements from Thompson’s

statement, our algorithm is of more practical interests.

Just as we see in Section 5, the cuts do not improve the efficiency of

the stopped simplex algorithm on Examples 5, 6, and 7. This is because

the cuts do not cut through the intersection of the objective function

hyperplane and the feasible region of the problem like those examples. In

this case, we call the cuts “non-effective”. Thus, it becomes a topic how to

construct “effective” cuts for the problem with a long narrow feasible

region.

In addition, when the problem has the solution far from the optimal

solution to RILP, shown as Examples 5, 6, and 7, it takes the stopped

simplex algorithm considerable computation due to the objective function

hyperplane shifts. Thus, a better improvement is worth doing for such a

problem.
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